أخبار عاجلة

الرئيسية / Indoor plants / succulent the plant

succulent the plant

Temperature has a multiplicity of effects on plants depending on a variety of factors, including the size and condition of the plant and the temperature and duration of exposure. The smaller and more succulent the plant, the greater the susceptibility to damage or death from temperatures that are too high or too low. Temperature affects the rate of biochemical and physiological processes, rates generally (within limits) increasing with temperature. However, the Van’t Hoff relationship for monomolecular reactions (which states that the velocity of a reaction is doubled or trebled by a temperature increase of 10 °C) does not strictly hold for biological processes, especially at low and high temperatures.

When water freezes in plants, the consequences for the plant depend very much on whether the freezing occurs intracellularly (within cells) or outside cells in intercellular (extracellular) spaces.[10] Intracellular freezing usually kills the cell regardless of the hardiness of the plant and its tissues.[11] Intracellular freezing seldom occurs in nature, but moderate rates of decrease in temperature, e.g., 1 °C to 6 °C/hour, cause intercellular ice to form, and this “extraorgan ice”[12] may or may not be lethal, depending on the hardiness of the tissue.

At freezing temperatures, water in the intercellular spaces of plant tissues freezes first, though the water may remain unfrozen until temperatures fall below 7 °C.[10] After the initial formation of ice intercellularly, the cells shrink as water is lost to the segregated ice. The cells undergo freeze-drying, the dehydration being the basic cause of freezing injury.

The rate of cooling has been shown to influence the frost resistance of tissues,[13] but the actual rate of freezing will depend not only on the cooling rate, but also on the degree of supercooling and the properties of the tissue.[14] Sakai (1979a)[13] demonstrated ice segregation in shoot primordia of Alaskan white and black spruces when cooled slowly to 30 °C to -40 °C. These freeze-dehydrated buds survived immersion in liquid nitrogen when slowly rewarmed. Floral primordia responded similarly. Extraorgan freezing in the primordia accounts for the ability of the hardiest of the boreal conifers to survive winters in regions when air temperatures often fall to -50 °C or lower.[12] The hardiness of the winter buds of such conifers is enhanced by the smallness of the buds, by the evolution of faster translocation of water, and an ability to tolerate intensive freeze dehydration. In boreal species of Picea and Pinus, the frost resistance of 1-year-old seedlings is on a par with mature plants,[15] given similar states of dormancy

The organs and tissues produced by a young plant, such as a seedling, are often different from those that are produced by the same plant when it is older. This phenomenon is known as juvenility or heteroblasty. For example, young trees will produce longer, leaner branches that grow upwards more than the branches they will produce as a fully grown tree. In addition, leaves produced during early growth tend to be larger, thinner, and more irregular than leaves on the adult plant. Specimens of juvenile plants may look so completely different from adult plants of the same species that egg-laying insects do not recognize the plant as food for their young. Differences are seen in rootability and flowering and can be seen in the same mature tree. Juvenile cuttings taken from the base of a tree will form roots much more readily than cuttings originating from the mid to upper crown. Flowering close to the base of a tree is absent or less profuse than flowering in the higher branches especially when a young tree first reaches flowering age

Rolf Sattler has revised fundamental concepts of comparative morphology such as the concept of homology. He emphasized that homology should also include partial homology and quantitative homology.[18][19] This leads to a continuum morphology that demonstrates a continuum between the morphological categories of root, shoot, stem (caulome), leaf (phyllome), and hair (trichome). How intermediates between the categories are best described has been discussed by Bruce K. Kirchoff et al.[20]

Honoring Agnes Arber, author of the partial-shoot theory of the leaf, Rutishauser and Isler called the continuum approach Fuzzy Arberian Morphology (FAM). “Fuzzy” refers to fuzzy logic, “Arberian” to Agnes Arber. Rutishauser and Isler emphasized that this approach is not only supported by many morphological data but also by evidence from molecular genetics.[21] More recent evidence from molecular genetics provides further support for continuum morphology. James (2009) concluded that “it is now widely accepted that… radiality [characteristic of most shoots] and dorsiventrality [characteristic of leaves] are but extremes of a continuous spectrum. In fact, it is simply the timing of the KNOX gene expression!.”[22] Eckardt and Baum (2010) concluded that “it is now generally accepted that compound leaves express both leaf and shoot properties.”.[23]

Process morphology (dynamic morphology) describes and analyzes the dynamic continuum of plant form. According to this approach, structures do not have process(es), they are process(es).[24][25] Thus, the structure/process dichotomy is overcome by “an enlargement of our concept of ‘structure’ so as to include and recognize that in the living organism it is not merely a question of spatial structure with an ‘activity’ as something over or against it,

عن wordpressadmin

شاهد أيضاً

growth of plants

The simulated growth of plants is a significant task in of systems biology and mathematical ...

اترك تعليقاً

لن يتم نشر عنوان بريدك الإلكتروني. الحقول الإلزامية مشار إليها بـ *